
6 COMMUNICATIONS OF THE ACM | SEPTEMBER 2025 | VOL. 68 | NO. 9

AD TK

letter to the editor

behavior converges to few outcomes,
enabling simpler reasoning.2,5 Fun-
neling explains how my “BareLogic”3
active learner can build models using
very little data for (for example) 63 SE
multi-objective optimization tasks
from the MOOT repository.4 These
tasks are quite diverse and include
software process decisions, optimiz-
ing configuration parameters, and
tuning learners for better analytics.
Successful MOOT modeling results
in better advice for project manag-
ers, better control of software op-
tions, and enhanced analytics from
learners that are better tuned to the
local data.

MOOT includes 100,000s of exam-
ples with up to 1,000 settings. Each
example is labeled with up to five ef-
fects. In practice, obtaining labels
is slow, expensive and error-prone.
Hence, the task of active learners
such as BareLogic is to find the best
example(s), after requesting the least
number of labels.6 To do this, Bare-
Logic labels N = 4 random examples,
then:

1.	 Scores and sorts labeled exam-
ples by “distance to heaven” (where
“heaven” is the ideal target for op-
timization, for example, weight=0,
mpg=max).

2.	 Splits the sort into ​​√ 
_

 N ​​ best and N
− ​​√ 

_
 N ​​ rest examples.

3.	 Trains a two-class Bayes classi-
fier on the best and rest sets.

4.	 Finds the most “best” unlabeled
example via arg maxX (log(like(best |
X)) − log(like(rest | X)))

5.	 Labels X, then increments N.
6.	 If N < Stop, go to step 1. Else re-

turn the top-ranked labeled example
and a regression tree built from the N-
labeled examples.

BareLogic was written for teaching
purposes as a simple demonstrator
of active learning. But in a result con-
sistent with “funneling,” this quick-
and-dirty tool achieves near optimal
results using a handful of labels. As
shown by the histogram, right-hand-

The Case for Compact AI
A reader response to recent largesse of
large language modeling material.

DOI:10.1145/3746057		

R
E A D I N G T H E M A RC H 2 02 5

Communications issue, it
struck me how many ar-
ticles assume large lan-
guage models (LLMs) are

the inevitable and best future path
for artificial intelligence (AI). Here,
I encourage readers to question that
assumption.

To be clear: I use LLMs—a lot—for
solo and tactical tasks such as con-
densing my arguments into this edi-
torial response. But for strategic tasks
that might be critiqued externally, I
need other tools that are faster, sim-
pler, and whose reasoning can be ex-
plained and audited. So while I do not
want to replace LLMs, I want to ensure
we are also supporting and exploring
alternatives.

In software engineering (SE), very
few researchers explore alternatives
to LLMs. A recent systematic review
found only 5% of hundreds of SE LLM
papers considered alternatives.1 This
a major methodological mistake that
ignores simpler and faster methods.
For instance, UCL researchers found
SVM+TF-IDF methods vastly outper-
formed standard “Big AI” for effort
estimation (100 times faster, with
greater accuracy).7

In SE, one reason for asking “if not
LLM, then what?” is that software
often exhibits “funneling”: that is,
despite internal complexity, software

Obtaining state-of-
the-art results can
be achieved with
smarter questioning,
not planetary-scale
computation.

SEPTEMBER 2025 | VOL. 68 | NO. 9 | COMMUNICATIONS OF THE ACM 7

letter to the editor

side of the figure here, across 63 tasks.
Eight labels yielded 62% of the opti-
mal result; 16 labels reached nearly
80%, 32 labels approached 90% opti-
mality, 64 labels barely improves on
32 labels, and so forth.

The lesson here is that obtain-
ing state-of-the-art results can be
achieved with smarter questioning,
not planetary-scale computation. Ac-
tive learning addresses many com-
mon LLM concerns such as slow train-
ing times, excessive energy needs,
esoteric hardware requirements, test-
ability, reproducibility, and explain-
ability. The accompanying figure was
created without billions of param-
eters. Active learners need no vast
pre-existing knowledge or massive
datasets, avoiding the colossal energy
and specialized hardware demands of
large-scale AI. Further, unlike LLMs
where testing is slow and often irre-
producible, BareLogic’s Bayesian ac-
tive learning is fast (for example, for
63 tasks and 20 repeated trials, the
figure here was generated in three
minutes on a standard laptop). Most
importantly, active learning fosters
human-AI partnership.

Unlike opaque LLMs, BareLogic’s
results are explainable via small la-
belled sets (for example, N = 32).
Whenever a label is required, humans
can understand and guide the reason-
ing. The resulting tiny regression tree
models offer concise, effective, and
generalizable insights.

Active learning provides a compel-
ling alternative to sheer scale in AI. Its
ability to deliver rapid, efficient, and
transparent results fundamentally
questions the “bigger is better” as-
sumption dominating current think-
ing about AI. It tells us that intelli-
gence requires more than just size.

I am not the only one proposing
weight loss for AI. The success of LLM
distillation (shrinking huge models for
specific purposes8) shows that giant
models are not always necessary. Active
learning pushes this idea even further,
showing that leaner, smarter model-
ing can achieve great results. So why
not, before we build the behemoth, try
something smaller and faster? 

References
1.	 Hou, X. et al. Large language models for SE: A

systematic literature review. TOSEM 33, 8 (Sept.
2024).

2.	 Lustosa, A. et al. More Signal: DRR for Better
Optimizations of SE Tasks. (2025);
 https://bit.ly/4ljC8oc.

3.	 Menzies, T. BareLogic Python Source Code (2024);
https://bit.ly/3FPgoBz

4.	 Menzies, T. MOOT= Many multi-objective optimization
tests (2024); https://bit.ly/4ewuRPP

5.	 Menzies, T., Owen, D., and Richardson, J. The strangest
thing about software. Computer 40, 1 (2007).

6.	 Settles, D. Active learning literature survey. Technical
Report 1648. U. Wisconsin-Madison Dept of CS (2009).

7.	 Tawosi, V., Moussa, R., and Sarro, F. Agile effort
estimation: Have we solved the problem yet?. IEEE
Trans SE 49, 4 (2023).

8.	 Zeming, L. et al. Survey on knowledge distillation for
large language models. ACM Trans. Int. Systems and
Technology (2024).

Tim Menzies (timm@ieee.org) is a professor of computer
science at North Carolina State University in Raleigh, NC,
USA.

© 2025 Copyright held by the owner/author(s).

Meta’s Hyperscale
Infrastructure:
Overview and Insights

Self-Certification:
Program Correctness
without Proofs

Justice, Equity,
Diversity, and
Inclusion at
UbiComp/ISWC

Technical Credit

Investigating Research
Software Engineering

Questioning
the Criteria
for Evaluating
Non-Cryptographic
Hash Functions

Program Merge:
What’s Deep Learning
Got to Do with It?

Asleep at the
Keyboard?

Negative-Weight
Single-Source
Shortest Paths in
Near-Linear Time

Plus, the latest news about
leveraging LLMs to make
robots smarter, the evolution
of CS at the universities, and
the restorative power of brain
implants.

�C
om

in
g

N
ex

t
M

on
th

 in
 C

O
M

M
U

N
IC

A
TI

O
N

S

Figure. Twenty runs of BareLogic on 63 multi-objective tasks. Histogram shows mean
(1 − (most − b4.min)/(b4.mu − b4.min)). ‘most’ is the best example returned by BareLogic;
‘b4’ are the untreated examples; ‘min’ is the optimal example closest to heaven.

0 10 20 30

Means seen in 20 trials, data sets sorted by b4.lo Number of Samples

%
M

ax
 O

p
ti

m
iz

at
io

n

M
ea

n
 d

is
ta

n
ce

 t
o

h
ea

ve
n

40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
100

90
80

70
60

50

40
30
20
10

0 8 16 32 64 12
8

25
6

b4.mu
b4.lo

n=8
n=16

n=32
n=64

n=128
n=256

FPO

