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behavior converges to few outcomes, 
enabling simpler reasoning.2,5 Fun-
neling explains how my “BareLogic”3 
active learner can build models using 
very little data for (for example) 63 SE 
multi-objective optimization tasks 
from the MOOT repository.4 These 
tasks are quite diverse and include 
software process decisions, optimiz-
ing configuration parameters, and 
tuning learners for better analytics. 
Successful MOOT modeling results 
in better advice for project manag-
ers, better control of software op-
tions, and enhanced analytics from 
learners that are better tuned to the 
local data.

MOOT includes 100,000s of exam-
ples with up to 1,000 settings. Each 
example is labeled with up to five ef-
fects. In practice, obtaining labels 
is slow, expensive and error-prone. 
Hence, the task of active learners 
such as BareLogic is to find the best 
example(s), after requesting the least 
number of labels.6 To do this, Bare-
Logic labels N = 4 random examples, 
then:

1.	 Scores and sorts labeled exam-
ples by “distance to heaven” (where 
“heaven” is the ideal target for op-
timization, for example, weight=0, 
mpg=max).

2.	 Splits the sort into ​​√ 
_

 N ​​ best and N 
− ​​√ 

_
 N ​​ rest examples.

3.	 Trains a two-class Bayes classi-
fier on the best and rest sets.

4.	 Finds the most “best” unlabeled 
example  via arg maxX (log(like(best | 
X ) ) − log(like(rest | X ) ) )

5.	 Labels X, then increments N.
6.	 If N < Stop, go to step 1. Else re-

turn the top-ranked labeled example 
and a regression tree built from the N-
labeled examples.

BareLogic was written for teaching 
purposes as a simple demonstrator 
of active learning. But in a result con-
sistent with “funneling,” this quick-
and-dirty tool achieves near optimal 
results using a handful of labels. As 
shown by the histogram, right-hand-
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Communications issue, it 
struck me how many ar-
ticles assume large lan-
guage models (LLMs) are 

the inevitable and best future path 
for artificial intelligence (AI). Here, 
I encourage readers to question that 
assumption.

To be clear: I use LLMs—a lot—for 
solo and tactical tasks such as con-
densing my arguments into this edi-
torial response. But for strategic tasks 
that might be critiqued externally, I 
need other tools that are faster, sim-
pler, and whose reasoning can be ex-
plained and audited. So while I do not 
want to replace LLMs, I want to ensure 
we are also supporting and exploring 
alternatives.

In software engineering (SE), very 
few researchers explore alternatives 
to LLMs. A recent systematic review 
found only 5% of hundreds of SE LLM 
papers considered alternatives.1 This 
a major methodological mistake that 
ignores simpler and faster methods. 
For instance, UCL researchers found 
SVM+TF-IDF methods vastly outper-
formed standard “Big AI” for effort 
estimation (100 times faster, with 
greater accuracy).7

In SE, one reason for asking “if not 
LLM, then what?” is that software 
often exhibits “funneling”: that is, 
despite internal complexity, software 

Obtaining state-of-
the-art results can 
be achieved with 
smarter questioning, 
not planetary-scale 
computation. 
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side of the figure here, across 63 tasks. 
Eight labels yielded 62% of the opti-
mal result; 16 labels reached nearly 
80%, 32 labels approached 90% opti-
mality, 64 labels barely improves on 
32 labels, and so forth.

The lesson here is that obtain-
ing state-of-the-art results can be 
achieved with smarter questioning, 
not planetary-scale computation. Ac-
tive learning addresses many com-
mon LLM concerns such as slow train-
ing times, excessive energy needs, 
esoteric hardware requirements, test-
ability, reproducibility, and explain-
ability. The accompanying figure was 
created without billions of param-
eters. Active learners need no vast 
pre-existing knowledge or massive 
datasets, avoiding the colossal energy 
and specialized hardware demands of 
large-scale AI. Further, unlike LLMs 
where testing is slow and often irre-
producible, BareLogic’s Bayesian ac-
tive learning is fast (for example, for 
63 tasks and 20 repeated trials, the 
figure here was generated in three 
minutes on a standard laptop). Most 
importantly, active learning fosters 
human-AI partnership.

Unlike opaque LLMs, BareLogic’s 
results are explainable via small la-
belled sets (for example, N = 32). 
Whenever a label is required, humans 
can understand and guide the reason-
ing. The resulting tiny regression tree 
models offer concise, effective, and 
generalizable insights.

Active learning provides a compel-
ling alternative to sheer scale in AI. Its 
ability to deliver rapid, efficient, and 
transparent results fundamentally 
questions the “bigger is better” as-
sumption dominating current think-
ing about AI. It tells us that intelli-
gence requires more than just size.

I am not the only one proposing 
weight loss for AI. The success of LLM 
distillation (shrinking huge models for 
specific purposes8) shows that giant 
models are not always necessary. Active 
learning pushes this idea even further, 
showing that leaner, smarter model-
ing can achieve great results. So why 
not, before we build the behemoth, try 
something smaller and faster? 
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Plus, the latest news about 
leveraging LLMs to make 
robots smarter, the evolution 
of CS at the universities, and 
the restorative power of brain 
implants.
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Figure. Twenty runs of BareLogic on 63 multi-objective tasks. Histogram shows mean 
(1 − (most − b4.min)/(b4.mu − b4.min)). ‘most’ is the best example returned by BareLogic; 
‘b4’ are the untreated examples; ‘min’ is the optimal example closest to heaven.
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