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From Open Source Data to Open Source Science

[Men!"]: Data Mining Static Code Attributes to Learn Defect Predictors, TSE’&’
[Men#$] T. Menzies, “Retrospective: Data Mining Static Code Attributes, TSE’"#

The Portland Context

Born from open source culture in Portland, Oregon
“We wore no suite and tie in our photos. We did not comb our hair”
Philosophy: svn commit -m "share stuff" will change SE research
But unhappy with SOTA data mining in SE
Key Insight: Walking around Chicago’s Grant Park ("&&()

Tim Menzies and Jelber Sayyad lamented: “Must do better. . . Why don’t we
make conclusions reproducible?”

The Radical Idea

In "&"# hard to believe “reproducible SE” was radical
Lionel Briand ("&&)): “no one will give you data”
Yet we persisted. . .
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Back to "&&#: Birth of PROMISE Project & Early Success

Two-Part Vision:
% Annual conference on predictor models in SE (to share results)
" Repository of %&&s of SE datasets: defect prediction, e*ort estimation,
Github issue close time, bad smell detection

Growth Trajectory:

Repository grew; moved to Large Hadron Collider (Seacraft, Zenodo)
Research students ran weekly sprints scouring SE conferences
Gary Boetticher, Elaine Weyuker, Thomas Ostrand, Guenther Ruhe
joined steering committee | prestige for growth

PROMISE vs MSR:

MSR: Gathering initial datasets (Devanbu [Dev%$])
PROMISE: Post-collection analysis, data re-examination [Rob%!]

Early Results:

Other areas struggled with reproducibility, while we swam in data
Papers applied tool sets to COC+%, JM%, XALAN, DESHARNIS etc
First decade: Numerous successful papers using consistent data
re-examination
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The "&&’ Paper’s Core Contribution

Research Question: Can data mining algorithms learn software defect
predictors from static code attributes?

Why This Matters:

“Software quality assurance budgets are finite while assessment
e!ectiveness increases exponentially with e!ort” [Fu%&]
“Software bugs are not evenly distributed across a project” [Ham!’],
[Ost!(], [Mis%%]
Defect predictors suggest where to focus expensive methods

Counter-Arguments Addressed:
% “Specific metrics matter” (%,,&s heated debates: McCabe vs Halstead)
" “Static code attributes do not matter” (Fenton & Pfleeger, Shepperd &
Ince)
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Menzies’s %st Law: Specific metrics do not matter

%st Law: “Specific metrics do not always matter in all data sets. Rather,
di)erent projects have di)erent best metrics.”

Supporting Evidence:
Feature pruning experiment on * dozen metrics across " datasets
Results: Pruning selected just #-* attributes per dataset
No single attribute selected by majority of datasets
Di*erent projects preferred di*erent metrics (McCabe vs Halstead vs lines
of code)
Theoretical debates of %,,&s (metric X vs metric Y) proven empirically
unfounded
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Menzies’s Corollary

Menzies’s Corollary:

“To mine SE data, gather all that can be collected (cheaply) then apply data
pruning to discard irrelevancies.”
Practical Impact:

Changed SE data mining methodology from “careful metric selection” to
“gather everything, prune later”
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Menzies #nd Law: Party time in metrics town

#nd Law: “Static code attributes do matter. Individually, they may be weak
indicators. But when combined, they can lead to strong signals that
outperform the state-of-the-art.”

Support Evidence:
Fenton & Pfleeger: Same functionality, di*erent constructs | di*erent
measurements
Shepperd & Ince: Static measures often “no more than proxy for lines of
code”
Our Response: Stress-tested these views by documenting baselines, then
showing detectors from static attributes much better than baselines
Key Finding: Multi-attribute models outperformed single-attribute
models

Key Quote: “Paradoxically, this paper will be a success if it is quickly
superseded.”
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Unprecedented Success Metrics

Citation Impact:

#!%&: Most cited paper (per month) in software engineering
#!%+: "&- of Google Scholar Software Metrics IEEE TSE papers used
PROMISE datasets [Men!"]
Current: %,"( citations (paper) . %"(" citations (repository)

Industrial Adoption:

Wan et al. [Wan#!]: ,&-. of !,# commercial practitioners willing to
adopt defect prediction
Misirli et al. [Mis%%]: +’- defect prediction accuracy, ’"- reduced
inspection e*ort, ((- fewer post-release defects
Kim et al. [Kim%$]: Samsung Electronics API development

&.)+ F% scores, reduced test case resources
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Comparative Analysis with Static Tools

Rahman et al. [Rah%(] Comparison:

Static analysis tools: FindBugs, Jlint, PMD
Statistical defect prediction: Logistic regression models
Result: “No significant di!erences in cost-e!ectiveness were observed”

Critical Advantage:

Defect prediction: Quick adaptation to new languages via lightweight
parsers
Static analyzers: Extensive modification required for new languages
Implication: Broader applicability across programming ecosystems
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Evolutionary Applications ("&&’-"&"#)

Extended Applications:

Security vulnerabilities [Shi%*]
Resource allocation for defect location [Bir#%]
Proactive defect fixing [Kam%&], [LeG%#], [Arc%%]
Change-level/just-in-time prediction [Yan%’], [Kam%*], [Nay%+], [Ros%$]
Transfer learning across projects [Kri%’], [Nam%+]
Hyperparameter optimization [Agr%+], [Che%+], [Fu%"], [Tan%&]

Research Evolution:

From binary classification to multi-objective optimization
From release-level to line-level prediction (Pornprasit et al. [Por#*] - TSE
Best Paper "&"!)
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The Four Phases of Repository Lifecycle

Phase Evolution:

% “Data? Good luck with that!” - Resistance and skepticism
" “Okay, maybe it’s not completely useless.” - Grudging acknowledgment
! “This is the gold standard now.” - Required baseline, field norms
( “A graveyard of progress.” - Stifling creativity, outdated paradigms

The Problem:
Decade ": Continued use of decades old data e.g. COC+% (%,+%),
DESHARNIS (%,++), JM% ("&&(), XALAN ("&%&)
Editorial Policy Change: Automated Software Engineering journal now
desk-rejects papers based on "&&# datasets

URL$ timm.fyi/esem"#.pdf %!/!&

https://timm.fyi/esem25.pdf


Menzies’s !rd Law & Transfer Learning

*rd law: “Turkish toasters can predict for errors in deep space satellites.”

Supporting Evidence:
Transfer learning research [Tur!’]: Models from Turkish white goods
successfully predicted errors in NASA systems
Expected: Complex multi-dimensional transforms mapping attributes
across domains
Reality: Simple nearest neighboring between test and training data
worked perfectly
Implication: “Many distinctions made about software are spurious and
need to be revisited”

Broader Transfer Learning Success:
Cross-domain prediction often works better than expected
Suggests universal patterns in software defect manifestation
Questions assumptions about domain-specific modeling requirements
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Menzies’s (th Law & Data Reduction

(th Law: “For SE, the best thing to do with most data is to throw it away.”

Supporting Evidence:
Chen, Kocaguneli, Tu, Peters, and Xu et al. findings across multiple
prediction tasks:

Github issue close time: Ignored +&- of data labels [Che%’]
E)ort estimation: Ignored ,%- of data [Koc%*]
Defect prediction: Ignored ,’- of data [Pet%$]
Some tasks: Ignored ,+-%&&- of data [Che!$]

Startling result: Data sets with thousands of rows modeled with just few
dozen samples [Men!+]

Theoretical Explanations:
Power laws in software data [Lin%$]
Large repeated structures in SE projects [Hin%#]
Manifold assumption and Johnson-Lindenstrauss lemma [Zhu!$],
[Joh+(]

Caveat: Applies to regression, classification, optimization
generative tasks may still need massive data
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Menzies’s #th Law & LLM Reality Check

$th law: “Bigger is not necessarily better.”

Supporting Evidence - LLM Hype Analysis:
Systematic review [Hou#(]: "", SE papers using Large Language Models
Critical finding: Only %*/##’ around $, compared LLMs to other
approaches
“Methodological error” - other PROMISE-style methods often
better/faster [Gri##], [Som#(], [Taw#*], [Maj%+]

Trading O) Complexity:
Scalability vs. privacy vs. performance [Lin#(], [Fu%"]
Often simpler methods provide better cost-e*ectiveness
Personal Pattern: “Often, I switch to the simpler.” [Agr#%], [Tan%&], [Fu%&]
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Menzies’s )th Law & Data Quality Paradox

&th Law: “Data quality matters less than you think.”

Supporting Research:
Shepperd et al. [She%*]: Found numerous PROMISE data quality issues

Repeated rows, illegal attributes, inconsistent formats
Critical gap: Never tested if quality issues decreased predictive power

Our Experiment:
Built mutators that injected increasing amounts of their quality issues
into PROMISE defect datasets
Startling result: Performance curves remained flat despite increased
quality problems
Implication: “There is such a thing as too much care” in data collection

Practical Impact:
E*ective predictions possible from seemingly dirty data
Questions excessive data cleaning e*orts in SE research
Balance needed: careful collection without over-engineering

URL$ timm.fyi/esem"#.pdf %’/!&

https://timm.fyi/esem25.pdf


Menzies’s ’th Law: Dumb sht*t, works

"th Law: “Bad learners can make good conclusions.”

Supporting Evidence:
Nair et al. [Nai%"]: CART trees built for multi-objective optimization
Key finding: Models that predicted poorly could still rank solutions
e)ectively
Could be used to prune poor configurations and find better ones
Implication: Algorithms shouldn’t aim for predictions but o*er weak
hints about project data
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Application of bad leaners: ultra-low cost active learning

https://timm.fyi/assets/pdf/cacm"#.pdf
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Menzies’s +th Law: Mud, rules

+th Law: “Science has mud on the lens.”

Supporting Evidence:
Hyperparameter optimization lessons [Agr#%], [Tan%&], [Fu%&] on
PROMISE data
Data mining conclusions changeable in an afternoon by grad student
with su/cient CPU
Critical Questions: Are all conclusions brittle? How build scientific
community on such basis?
Where are stable conclusions for building tomorrow’s ideas?

?Bayesian Approach Needed: Address uncertainty quantification and robust
foundations
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Menzies’s ,th Law & Simplicity Challenge

’th Law: “Many hard SE problems, aren’t.”

Supporting Philosophy:
Cohen’s Straw Man Principle [Coh’$]: “Supposedly sophisticated
methods should be benchmarked against seemingly stupider ones”

Personal Experience Pattern:
“Whenever I checked a supposedly sophisticated method against a
simpler one, there was always something useful in the simpler”
“Often, I switch to the simpler.” [Agr#%], [Tan%&], [Fu%&]

Important Caveat:
Not all SE problems can/should be simplified (safety-critical; generative);
“Just because some tasks are hard, does not mean all tasks are hard”

Challenge to Community: “Have we really checked what is really complex and
what is really very simple?”
Current Focus: Minimal data approaches - landscape analysis [Che%’], [Lus#(],
surrogate learning [Nai#!], active learning [Kra%$], [Yu%+]
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Contemporary Challenges & Solutions

PROMISE Revival Strategy (Gema Rodríguez-Pérez):

Data sharing now expected for almost all SE papers
PROMISE must di*erentiate: accept higher quality datasets
Focus on enhancing current data space, conducting quality evaluations

Ste)en Herbold’s Caution:

Early PROMISE: Collections of metrics (not raw data)
MSR shift: Raw data . fast tools (e.g., PyDriller, GHtorrent)
Risk: “Little curation, little validation, often purely heuristic data
collection without quality checks” [Her##]

Modern Data Access: %%&&. recent Github projects [Xia##], CommitGuru
[Ros%$]
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Current “Hot” Research Directions

Contemporary Approaches:

DeepLineDP (Pornprasit et al. [Por#*]): Deep learning for line-level
defect prediction (TSE Best Paper "&"!)
Model interpretability: Growing research focus [Tan#%]
Multi-objective optimization: Hyperparameter selection [Xia##],
unfairness reduction [Cha#!], [Alv#*]

Optimize CPU-Intensive Algorithms:

MaxWalkSat [Men!’]
Simulated annealing [Men!#], [Men!"]
Genetic algorithms

Minimal Data Approaches:

How much can be achieved with as little data as possible?
Suspicion of “large number of good quality labels” assumption
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Transfer Learning Surprises

Cross-Domain Success [Tur!’]:

Turkish white goods | NASA systems error prediction
Expected: Complex multi-dimensional transforms
Reality: Simple nearest neighboring between test and training data

Implication: “Many distinctions made about software are spurious and need
to be revisited”

Power Laws & Repeated Structures:

Lin & Whitehead [Lin%$]: Fine-grained code changes follow power laws
Hindle et al. [Hin%#]: Software naturalness - large repeated structures
Result: Thousands of rows modeled with few dozen samples [Men!+]
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Key Takeaways & Community Call-to-Action

Lessons Learned:
% Open science communities can be formed by publishing baseline . data
. scripts

" Reproducible research drives field advancement when embraced
collectively

! Simple solutions often outperform sophisticated ones
( Data quality matters less than expected for predictive tasks
# Transfer learning works across surprisingly diverse domains

Call-to-Action:

“Have we really checked what is really complex and what is really very
simple?”
Challenge assumptions about problem complexity
Benchmark sophisticated methods against simpler alternatives
Focus on stable, reproducible conclusions
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